beandeau>

Contributions > By speaker > Shaw David

Updated Masses for the Gas Giants in the Eight-Planet Kepler-90 System Via Transit-Timing Variation and Radial Velocity Observations
David Shaw  1@  , Lauren Weiss  1  , Eric Agol  2  , Karen Collins  3  , Khalid Barkaoui  4, 5, 6  , Cristilyn Watkins  3  , Richard Schwarz  3  , Howard Relles  3  , Chris Stockdale  7  , John Kielkopf  8  , Fabian Frustaglia  9  , Allyson Bieryla  3  , Joao Gregorio  10  , Owen Mitchem  11  , Katherine Linnenkohl  11  , Adam Popowicz  12  , Norio Narita  6, 13, 14  , Akihiko Fukui  13, 6  , Michael Gillon  4  , Ramotholo Sefako  15  , Avi Shporer  5  , Adam Lark  16  , Amelie Heying  16  , Isa Khan  16  , Beibei Chen  16  , Kylee Carden  17  , Donald Terndrup  17  , Robert Taylor  17  , Dasha Crocker  17  , Sarah Ballard  18  , Daniel Fabrycky  19  
1 : University of Notre Dame
2 : University of Washington
3 : Harvard-Smithsonian Center for Astrophysics
4 : Universite de Liege
5 : Massachusetts Institute of Technology
6 : Instituto de Astrofísica de Canarias
7 : Hazelwood Observatory
8 : University of Louisville
9 : Frustaglia Private Observatory
10 : Crow Observatory
11 : University of Oregon
12 : Silesian University of Technology
13 : The University of Tokyo
14 : Astrobiology Center of NINS
15 : South African Astronomical Observatory
16 : Hamilton College
17 : The Ohio State University
18 : University of Florida
19 : University of Chicago

The Kepler-90 (K90) system exhibits the greatest multiplicity (8) of planets found to date. All eight planets transit and were discovered by the NASA Kepler primary mission. The two outermost planets, g (P = 211 d) and h (P = 332 d), exhibit significant transit-timing variations, but were only observed 6 and 3 times respectively by Kepler. To determine masses and orbital properties for planets g and h, we combined 34 radial velocities (RVs) of K90 collected over a decade with the Kepler data. We jointly modeled the transit times of planets g and h and the RV time series, then used our two-planet model to predict their future times of transit. These predictions led us to recover a transit of K90g with ground-based observatories in May 2024. We then combined the 2024 transit and several previously unpublished transit times of planets g and h with the Kepler transits and RV data to update the masses and linear ephemerides of the planets, finding Mg = 15.0 ± 1.3 M⊕, and Mh = 203 ± 16 M⊕. These results enable further insights into the K90 system and pave the way for atmospheric characterization with space-based facilities.


Loading... Loading...