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Gas giants, by definition, form inside disks full of gas
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ALMA Partnership et al. 2015

credit: ALMA / ESO / NAOJ / NRAO
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HL Tau
Pebble size particle

- (sub)mm

ALMA Partnership et al. 2015

credit: ALMA / ESO / NAOJ / NRAO
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- Stokes number

- local concentration

- Pressure gradient

How to get these rings? - dynamics of pebble
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•Pebbles’ radial velocity - NSH solution

Dust particles drift along the pressure gradient

Daniel Carrera, Planetesimal Formation Meeting 2020 
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How to get these rings?



Astrophysics of Planet Formation, 

Armitage

•Planet Gap Opening

Lin & Papaloizou 1979

⇒ Pressure bumps at the outer edge of the gap

•Goldreich & Tremaine 1980;

•Rice+ 2006; Pinilla+ 2012, 2015;

•Dodson-Robinson & Salyk 2011, Zhu+ 2011

•Zhang+ 2018, Kanagawa+ 2018;

•Dullemond+ 2018

How to get the pressure bump?
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HL Tau

ALMA Partnership et al. 2015
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HL Tau

ALMA Partnership et al. 2015

credit: ALMA / ESO / NAOJ / NRAO



Andrews et al. 2018

Long et al. 2018

Francis et al. 2020

…

Gaps in Disks



Lots of protoplanets!?
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Lots of protoplanets!?

Andrews et al. 2018

Long et al. 2018

Francis et al. 2020

…

where is the chicken come from?



Confirming planets at such a young phase is 
extremely challenging

Imaging of PDS 70 has revealed two protoplanets. 

The discovery of these planets with multiple VLT instruments (a - Hα/MUSE Haffert et al. (2019); b - K1/SPHERE, Keppler 

et al. (2018); c - L'/NACO, Keppler et al. (2018)) conclusively hint at a planetary nature.

Direct imaging searches usually result in non-detections (e.g. Xie et al. 2020; Asensio-Torres et al. 

2021; Cugno et al. 2023; Follette et al. 2023; Wallack et al. 2024) with PDS 70 the famous exception



Formation of planets at wide orbit is hard

Pebble accretion in wide orbit

- Lower pebble density

- Longer orbital timescale

- Higher disk scale height

- Stronger headwind

Rings could be the birthplace of planet!
1au 50au



Formation of planets at wide orbit is hard

Pebble accretion in wide orbit

- Lower pebble density

- Longer orbital timescale

- Higher disk scale height

- Stronger headwind

Rings could be the birthplace of planet!

𝑡growth < 𝑡disk 𝑡growth > 𝑡disk

growth timescale easily longer than 10 Myr



Wide-orbit Giant Planets are Rare

Fulton et al. 2021



1) Can these pebble rings maintain w/o planets? or more 
generally, w/o a pressure bump?



Clumpy ring model
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Clumpy ring model

Jiang & Ormel 2021
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Clumpy ring model
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Leak

Disk Pebbles

Settle

Ring Pebbles

Diffuse

Supply
Particles can be lost from the ring:

• leak away from the front
no pressure containment

• diffuse in z direction
suppressed by collisions (Krijt et al. 2017)

• converted into planetesimals
assumed to operate at a rate ε that is a fraction of the settling rate.

If the mass gain is insufficient, the ring 

dissolves

http://adsabs.harvard.edu/abs/2017LPI....48.2291K


Ring evolution

Jiang & Ormel 2021

•St = 0.01

•𝑀
·

acc = 10−9𝑀⊙yr
−1

•𝑀
·

ext = 100𝑀⊕Myr
−1

•Σdust/Σgas = 0.016

•𝛼acc = 𝛿z = 10−3

•𝛼clump = 10−5



Ring evolution

Jiang & Ormel 2021

In this animation we see the following:

• initially, there is a small bump in 

dust Σ 

• a ring (quickly) reaches a quasi 

steady-state
balancing influx from disk pebbles upstream and loss from 

ring pebbles downstream

• it migrates (imperceptibly) outwards

• it converts a fraction of the incoming 

mass into planetesimals



•Constant size setup

•ALMA band 6, 239GHz

Simobservation Elias 24 AS 209



•Constant size setup

•ALMA band 6, 239GHz

Simobservation Elias 24 AS 209



Formation of planets at wide orbit is hard

Pebble accretion in wide orbit

- Lower pebble density

- Longer orbital timescale

- Higher disk scaleheight

- Stronger headwind

Rings could be the birthplace of planet!

𝑡growth < 𝑡disk 𝑡growth > 𝑡disk

growth timescale easily longer than 10 Myr

1au 50au



Pebble ring are massive

Chicken or Egg?

Credit: Richard Bizley/ Science Source

ring mass > 150𝑀⊕, Facchini et al. 2020



Chicken or Egg?

Pebble accretion

cross sections are huge

Credit: Richard Bizley/ Science Source



Chicken or Egg?

planet-pebble 

(relative) velocities are small

Credit: Richard Bizley/ Science Source

Jiang & Ormel 2023

enables P.A. even for small planetesimals (Visser & Ormel 2016)



Chicken or Egg?

Dust/Pebble inside the ring

- High density, mass budget

- Large cross section

- low relative velocity

Rings could be the birthplace of planet!

Credit: Richard Bizley/ Science Source

?

Rings could be the birthplace of planets!

!



2) Can planets form inside these pebble rings?



v

Clumpy ring

rings massive enough to form planetesimals

𝜌d/𝜌g = 1 at the midplane

Pressure-Bump ring

Xu & Bai 2022



Jiang & Ormel 2023

N-body simulation with pebble accretion
Planets formation inside the ring



Planets formation inside the ring

Condition of planetesimal formation

- High pebble density

- Low headwind

Rings could be the birthplace of planet!



Planets formation inside the ring

Condition favored by pebble accretion

- High pebble density

- Low headwind

Rings could be the birthplace of planet!



Planets formation inside the ring

Condition favored by pebble accretion

- High pebble density

- Low headwind

Rings could be the birthplace of planet!

mass flux fed to the ring ≃ mass flux accreted by planets



Planetesimals belt - radial profile

Cyan background

“left-over” planetesimal belt

Rings could be the birthplace of planet!



Planetesimals belt - radial profile

Cyan background

“left-over” planetesimal belt

divide the planetesimal mass into bins at 
each radius

Rings could be the birthplace of planet!



𝑡 = 0.5Myr 𝑡 = 1.5Myr 𝑡 = 2.5Myr

Planetesimals belt - radial profile



𝑡 = 0.5Myr 𝑡 = 1.5Myr 𝑡 = 2.5Myr

Planetesimals belt - radial profile

sharper inner edge
flatter outer edge



200au

A Debris disk

Faramaz et al. 2021

ALMA band 7

200au



200au

Faramaz et al. 2021

The Cold Debris disk around HR 8799

ALMA band 7

Credit: Jason Wang (Northwestern)/William Thompson 

(UVic)/Christian Marois (NRC Herzberg)/Quinn Konopacky (UCSD)



Formation of HR 8799

Faramaz et al. 2021

1:2:4:8 resonance
Wang et al. 2018

Zurlo et al. 2022



Formation of HR 8799
• use MCMC to “tune” parameters

• disk mass

• migration speed

• turbulence

• interval



Formation of HR 8799
• a sample semi-analytical solution:

• disk mass

• migration speed

• turbulence

• interval



Formation of HR 8799

• reproduce the semi-analytical results

• by N-body simulation



Most direct imaged planets

51 Eri b

AF Lep b

HR 8799

beta Pic b

Maire et al. 2019 Mesa et al. 2023 Thompson et al. 2023 Lagrange et al. 2019



Most direct imaged planets co-exist w/ disk
if not all…

Pawellek et al. 2021

Maire et al. 2019 Mesa et al. 2023 Thompson et al. 2023 Lagrange et al. 2019

Faramaz et al. 2021 Faramaz et al. 2021

51 Eri b

AF Lep b

HR 8799

beta Pic b



Most direct imaged planets co-exist w/ disk
if not all…

Mâlin et al. 2025



A barely grown baby giant planet?

R3

R2

R1

dip by planet

planet

JWST/MIRIVLT/SPHERE

50 au

1.5
′′

Lagrange et al. 2025Ren et al. 2021



Two giant planets inside the cavity rim - PDS 70
Haffert et al. 2019

2:1 resonance ?

Benisty et al. 2021

+

Wang et al. 2021

Kepler et al. 2018



Three? giant planets inside the cavity rim - PDS 70

Trevascus et al. 2025

see also Hammond et al. 2025

4:2:1 resonance ?

Kepler et al. 2018

Benisty et al. 2021

+

Haffert et al. 2019



Giant planets around M stars? 

Collection from Pinilla 2022, Kurtovic et al. 2022, Shi et al. 2024 and private communication with the DMOST team

Well, look at the disks around them...

All known disks around VLMSs (<0.2 M_sol) resolved by ALMA and has a disk radii > 0.2” (~30 au)



•Pebble rings can stay stable without pressure bumps, 
creating wide belts of planetesimals. Jiang & Ormel 2021

•These rings can form planets even far from the star (>50 
au). Jiang & Ormel 2023

•This idea can explain systems like HR 8799, where giant 
planets sit inside a cold outer belt. Jiang & Ormel in prep.

Take home messages



200au

Faramaz et al. 2021

ALMA band 7

Credit: Jason Wang (Northwestern)/William Thompson 

(UVic)/Christian Marois (NRC Herzberg)/Quinn Konopacky (UCSD)

Take home messages



Disk substructure statistics

van der Marel & Mulders 2021



Composition of HR 8799 planets

Nasedkin et al. 2024



Composition of HR 8799 planets

Nasedkin et al. 2024

Öberg et al. 2011



CO snowlines as 1st-gen ring?

Zhang et al. 2021



CO snowlines as 1st-gen ring?

Matra et al. 2018



Solar System?



Morbidelli et al. 2007

Liu et al. 2022

Kuiper Belt - inner Oort cloud

Kaib & Quinn 2009

Solar System?
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