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Why cool giant planets?

Shape the architecture of planetary systems

* Large mass

* Fast formation: affect small bodies, volatile delivery
Composition

* Are not affected by an unknown inflation mechanism

* Provide information on the physical and chemical
properties of proto-planetary disks

Natural laboratories

* Information on behavior of H, He and other elements
at high P-T

Currently, still the ideal planets for
detection and characterization

Credit: NAOJ.




Why is the internal structure important?

Core+Envelope (CE) Dilute Core (DC) Fully Mixed (FM)

I « Determines Mz
Z(m)  Determines Mz_atm /
. Mz_interior
« More important for better data

Peerani et al. 2025



Why is the evolution important?

Primordial

internal structure adiabatie. Internal structure changes

— with time

But also: internal structure
determines the heat

transport mechanism and

therefore the cooling (R(t))

core erosion

stable
non-adiabatic



The planetary bulk metallicity is constrained given cooling

tracks and radius, age and mass measurements:
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Core+envelope

Fully-mixed

0.3 M, "

Z=025 ---- SCvH95
—— CMS19+HG23

0.3 M

1 |
100 10! 1071
Age [Gyr]

Core+envelope Fully mixed

core

Bulk metallicity: Z, = M, /M,

Z, = Mo IM,, for core+envelope
Z, = L, for mixed

(critical for characterization & interpretation of
atmospheric measurements)

Howard et al. 2024



Characterization What are giant planets

How do giant made of?
ow do glan What are their internal
planets
structures?
evolve?
Understanding cool
giant planets
Formation * How do giant

planets form?



Making an interior models

— = 4z7r?
or p
EOS is needed to solve this set of equations
oP (knowledge of the behavior of multi-component
— = —pg systems at high pressure)
or EOS: (P,T)— p, S, etc.
or oPT . :
— — VT Need to know how heat is transported to estimate VT
or or P
V+: convection, radiation, conduction
oL , |
—=darp\é—-T
or




What composition to choose?

hydrogen, helium and heavy elements
\ J

J |
I I

easy © proto-solar ratio easy © we can choose anything
hard® EOS is complicated hard® EOS is not well known, mixtures?

molecules, atoms, ions
coexist & interact

1 __x Y oz
p(B,T)  pu(PT) pue(P,T) pz(RT)

S(P,T)=XSu(P,T)+YSue(P,T) +ZS7z(P, T),



Giant planet interiors: high pressures & temperatures.
hyd roge n Equation of state (EOS) is difficult to calculate

(molecules, atoms, ions coexist and interact).
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A strong connection to high-pressure physics

Giant planets are fluid
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Giant planet interiors: high pressures & temperatures.
Equation of state (EOS) is difficult to calculate
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Giant planets are fluid

A strong connection to high-pressure physics




Hydrogen-helium

8000 T

H-He demixing

Schattler 2018, demix. vdW-DF ----
Morales 2013, demix. PBE ---
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M. vs Mp The structure & H-He EOS matter
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Radius [Re]

Composition of giant

Mass (M,)
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The giant planets in the Solar System
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Giant planets are non-homogenous, not fully convective and
have fuzzy cores

Need to modify exoplanets models

e.g., Helled et al. 2022
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Credit: QA‘/J]:L-Caltech



(Giant) Planet Formation

Terrestrial planets Neptunes, mini-Neptunes Gas giants
Formation of a heavy-element core The core is massive enough to The gas accretion rate exceeds the solid
via planetesimal/pebble accretion accrete and retain gas (H-He) accretion rate > runaway growth
(controlled by cooling)

. ‘ Phase 2 E
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"see e.g., Helled et al. 2014, time (Myrs)

2022, Helled & Morbidelli, 2021



Updated formation models predict fuzzy cores & composition gradients
Historically: Mz = M¢ye.

Reality: once M,.~a few Mg most of the heavy elements remain in the envelope.

Cores of giant planets are “fuzzy”:

10 =
* The core is not distinct from the envelope
« The “core” can include H-He 08 |
» This affects the long-term evolution, A
implications to giant planet characterization.. 06~ %
N \
04 “ depending®na
L |“ 0@30@@:”‘_2 ;chcarse:;muring
| e
005~ 5 100 150 200

250 300
Planet's Mass [M ]
Helled & Stevenson, 2017, Lozovsky et al., 2017,

Valletta & Helled, 2020, 2022...



Updated formation models predict fuzzy cores & composition gradients

Historically: Mz = M¢ye.
Reality: once M,.~a few Mg most of the heavy elements remain in the envelope.

Cores of giant planets are “fuzzy”: 0

* The core is not distinct from the envelope

* The “core” can include H-He

» This affects the long-term evolution,
implications to giant planet characterization..

0.8-

Mz depends on heavy-element

accretion during runaway and
post-formation accretion

0.6

04

phase32

The composition and primordial internal
structure of giant planets depends on their 02
growth history:

The ratio of heavy elements accretion to gas o.oio

aCCI‘etion . Planet's Mass [M ]
Helled & Stevenson, 2017, Lozovsky et al., 2017,

Valletta & Helled, 2020, 2022...




Predicting composition gradients and extended fuzzy cores:
gas accretion occurs only after a few Myr at M;~100 I\/I@

Phase 2: up to 100 Mg
withZ ~ 0.3

Phase 1: dM;/dt >> dM,;_,./dt

Phase 2: dM,,,./dt ~ 3 dM,/dt /

Heavy element mass fraction Z

Phase 3: dM,/dt << dMy_y./dt

a |
1

0.0~ 1 1

1 1 1 1 1
0 50 100 150 200 250 300
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Alibert et al., 2018, Venturini & Helled, 2019, Helled et al. 2022, Helled, 2023..




Heavy element mass fraction Z

Predicting composition gradients and extended fuzzy cores:
gas accretion occurs only after a few Myr at M,~100 I\/I@
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Saturn may have 'failed' as a gas giant

m By Paul Sutter published July 27, 2023

The ringed planet is definitely gaseous, but is it really 'giant?"

o @ @ @ o ® Comments (8)

Helled et al. 2022



Can this scenario explain all the four giant planets?
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Can this scenario explain all the four giant planets?

Can naturally explain the predicted internal structure of the planets

diluted/fuzzy core
g ' (heavy elements)
- & — L
- ‘\
V mixed interiors
(composition gradients)
| molecular hydrogen, helium-poor M molecular H,, helium, ices
M helium rain region Ices, mixed with rocks? Mixed with H-He?
metallic hydrogen, helium-rich Rocks, mixed with ice?
= === -
50 100 150 200 250 300 _ t<<1Myr _ t~afewMyr . t<<1Myr
Planet Mass (Mg ) time

*¥**A link between planetary structure & origin™***



Heavy-element mass fraction
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only after a few Myr, it can
explain why giant planets are

less common in the galaxy...
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Radius (Rg)
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The transition to gas giant planets

| Diversity in composition

failed giants

(exact composition
depends on local
formation conditionsy’

H-He dominated

gas giants

| 5 | 10 '2'5' '5|O' | 100 | 3(')0'
Mass (Mg )

1000

13000

M-R relation transitions at
~Saturn’s mass

-> the transition to gas giant

planets (H-He dominated)



The transi

tion to gas giant planets

101 -

Radius (Rg)
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Weiss et al. (2013)
Hatzes & Rauer (2015)
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Bashi et al. (2017)
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Edmndson et al (2023)
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Source Mass—radius: R(M) Transition Mass—radius: R(M) Transition Mass—radius: R(M)
Weiss et al. (2013) - - 09670 J8 p033:005 M =150 16,9443 pg-004001
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All M-R studies find a
transition at ~Saturn mass!



Connecting composition to formation

Bulk metallicity (Zp)

Chachan et al., 2025
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Characterization

Understanding cool
giant planets

Formation




Convective mixing can change the internal structure

Jupiter Mass, Primordial Entropy 9.00 kgm, ™'

Heavy—Element Mass Fraction
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Knierim & Helled, 2024, more from Henrik

1.0

Heavy—Element Mass Fraction

Saturn Mass, Primordial Entropy 9.00 kgm, ™




Atmosphere-bulk composition

« If giant planets are not fully mixed, how do we interpret atmospheric measurements?
« Abetter understanding of interior-atmosphere connection

Atmospheric metallicity — bulk composition

Kepler-16b | M = 0.33 M, HAT-P-54b | M = 0.76 M,
0.14 ;
Zen\/
i Yl =.0.12 1 x solar
T 5 x solar
c 0.10
a
5008
F 0.06
(18]
$0.04
o
0.02
i 0.00 1 ]
Upcoming talks... 025 030 035 040 045 050 0.0 01 0.2 0.3 0.4

Bulk Metallicity Bulk Metallicity



What’s next?

Theory
v" A unified theoretical framework for formation-evolution-structure

v Reflect our understanding of SS planets on exoplanets and vice versa

v A better understanding of the theoretical vs. observational uncertainties
Vo

Observations:

v'Mass-metallicity relation (various distances)

v Atmospheric composition — bulk composition relation

v Atmospheric refractory-to-volatile ratio (various masses, staller properties,
distances...)

v'Luminosities — various ages, masses (+atmospheric composition)
V...
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Mass-Metallicity relation for cool giant planets
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Mass-Metallicity relation for cool giant planets @

Bulk metallicity (Z;)

Planet mass (M))
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Mass-Metallicity relation for cool giant planets
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Is the trend the same across different stellar types?
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