Introduction to Radial Velocities + Gaia Astrometry

Luke Handley, Domenico Barbato, Giulia Piccinini, Flavien Kiefer

OHP - 09/10/2025

Radial Velocities (RVs)

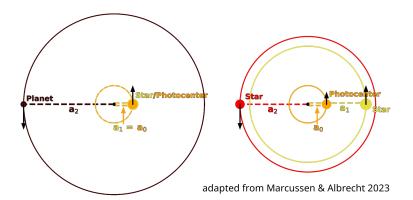

Line of sight reflex motion of stellar host

Gaia Astrometry

Plane of sky reflex motion of stellar host

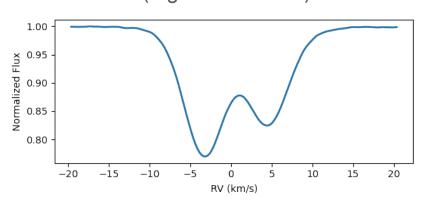
Complementary Methods

Best of both worlds
Broader accessibility
Precise orbits/true
masses


Current Data Products and Accessible Parameters

Hipparcos-Gaia	Gaia DR3	Radial Velocity Catalogues	Can Solve For:
Long-Baseline Proper Motion/Accelerations	Renormalized Unit Weight Error (RUWE)	RV Time Series	True Masses
	Astrometric Solution	Activity Indicators	Orbital Inclinations
	Proper Motion Anomaly	Spectral Properties	Angular Momentum Vectors
	Systematic RV		

Validation and Contamination


Binary Star Contamination

- Similar mass binaries can masquerade as planetary signals
- Binary fraction in DR3 ≈ 10% (Holl+23) to 32% (Stefánsson+25)

RV/Spectroscopic Validation

- Cross-Correlation Functions (CCFs) can immediately reveal binaries
- Can compare RUWE/PMa to RV masses
- Can further compare to sensitivity curves (e.g. Kervella+19)

The Power of Joint Modeling Gaia + RVs

Challenges of DR3 Alone:

Mass vs. semimajor axis degeneracy

$$\alpha = \left(\frac{M_{\rm p}}{M_{\star}}\right) \left(\frac{a_{\rm p}}{1\,{\rm AU}}\right) \left(\frac{d}{1\,{\rm pc}}\right)^{-1} {\rm arcsec}$$

Noise treatment can be unreliable

Towards a composite picture of Planetary Systems

- Model astrometry + RVs (or high contrast imaging) in MCMC framework
- Orthogonality breaks degeneracies
- Each method does the heavy lifting in it's own regime
 - RV characterizes shorter/small orbits, Gaia constrains outer companions

Vetted Candidates + System Orbital Characterization

Key Goals and Future Prospects

Science Objectives:

- Precise mass distributions/occurrence rates
- Mutual inclinations and dynamical characterization
- Robust, vetted exoplanet catalogues

Future of Gaia + RVs:

- Gaia DR4 Much larger catalogues of planet candidates
- Characterization of thousands of exoplanet orbits
- Demographic studies with true mass measurements