Characterizing cold giant exoplanets and their systems

in direct imaging

Hence, there may be many objects of planet-like character in the galaxy.

But how should we proceed to detect them? The method of direct photography used by Strand is, of course, excellent for nearby binary systems, but it is quite limited in scope. There seems to be at present no way to discover objects of the mass and size of Jupiter; nor is there much hope that we could discover objects ten times as large in mass as Jupiter, if they are at distances of one or more astronomical units from their parent stars.

O. Struve, The Observatory, Vol. 72 (1952)

Roman, Nancy Grace. Planets of other suns.

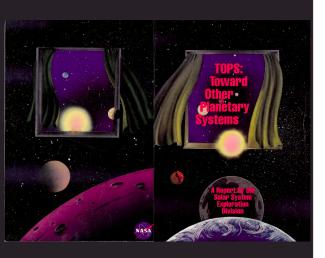
As seen from the distance of Alpha Centauri, Jupiter, at its maximum apparent separation from the sun, 3".94, would be a star of 23^m.4 (assuming that its phase function is that of Venus); it would brighten to a maximum of 22^m.0 at exterior conjunction. For Venus, Earth,

Saturn, the maximum brightnesses and separations are, respectively: 22^m,5 and 0",55, 23^m,4

and 0.76, and 22.7 and 7.23 (with the rings at moderate inclination).

Thus, a similar planetary system around Alpha Centauri would be within the reach of our largest telescopes and our current photoelectric techniques if our terrestrial atmosphere did not limit our resolution. At a separation of more than 2", it does not seem to be a serious problem to get rid of the light of the primary in the absence of an atmosphere.

N. G. Roman, Astronomical Journal, Vol. 64 (1959)

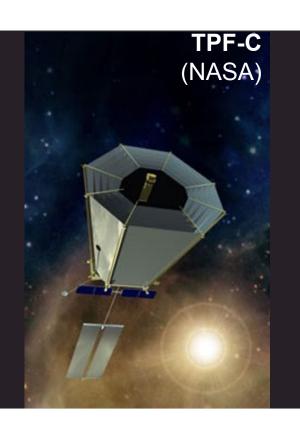

The 90s set the stage

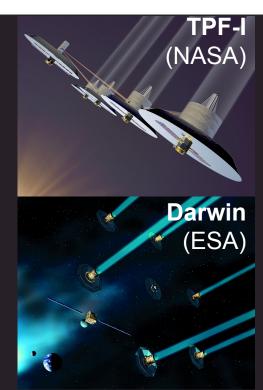
TOPS: Towards Other Planetary Systems report (1991)

The 90s set the stage

TOPS: Towards Other Planetary Systems report (1991)

- The observational techniques to detect evidence of other planetary systems are developed sufficiently to begin a promising search now, using indirect methods at first, and progressing to direct detection.
- Three phases of the proposed program:
 - → TOPS-0: building Keck-II
 - → TOPS-1: imaging instrument on an orbiting telescope
 - → TOPS-2: imaging interferometer in space or in the Moon to *study "Earths" around other stars.*

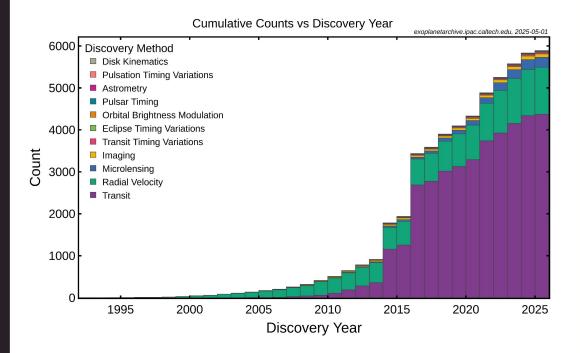

The 90s set the stage


Visible & near-IR

Mid-IR

How unique is our Earth?

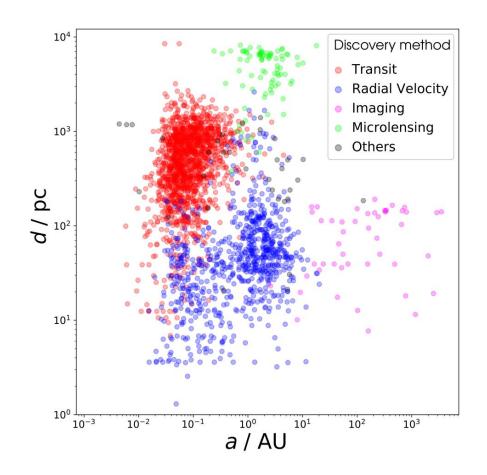
(A lingering question)



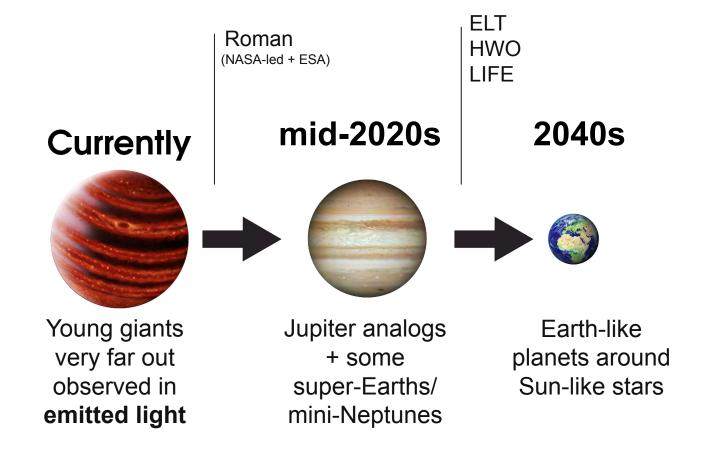
30 years of exoplanet discoveries

~6000 confirmed exoplanets so far.

~4400 of them transit ~1100 discovered in RV


30 years of exoplanet discoveries

~6000 confirmed exoplanets so far.


~4400 of them transit ~1100 discovered in RV

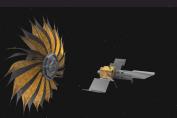
Many not yet accessible for atmospheric characterization.

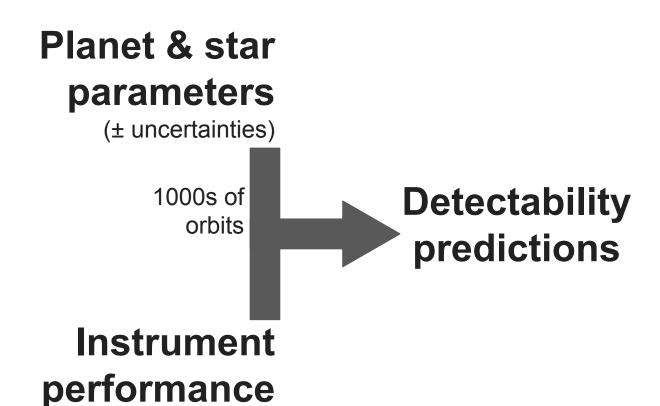
→ Need for direct imaging

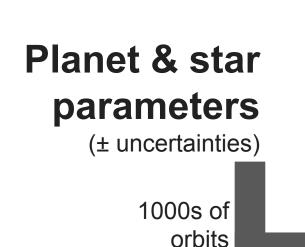
Direct imaging timeline

Looking ahead

Which planets will future missions probe? What is their overlap?



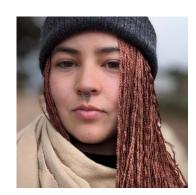




Credit images: NASA GSFC, ESO, JPL, LIFE

Carrión-González et al. (2021a)

Detectability predictions


Instrument performance

Carrión-González et al. (2021a)

CurrentlyPrivate code

UpcomingOnline interactive tool

Paulina Palma-Bifani Postdoc at Obs. de Paris

CurrentlyOnly reflected light

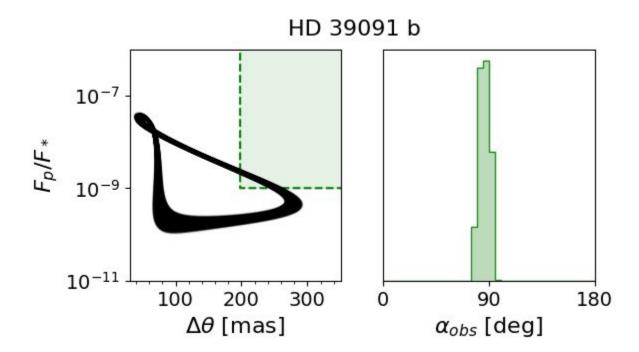
UpcomingThermal emission

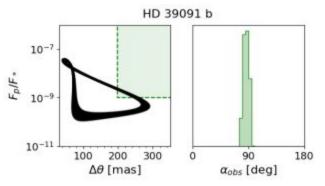
Sebastian Schwaiger ETH Zurich, MSc at MPIA

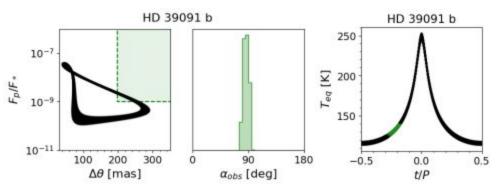
 p_1 : $\Delta\theta_1$; $(F_p/F_*)_1$ p_2 : $\Delta\theta_2$; $(F_p/F_*)_2$ p_3 : $\Delta\theta_3$; $(F_p/F_*)_3$

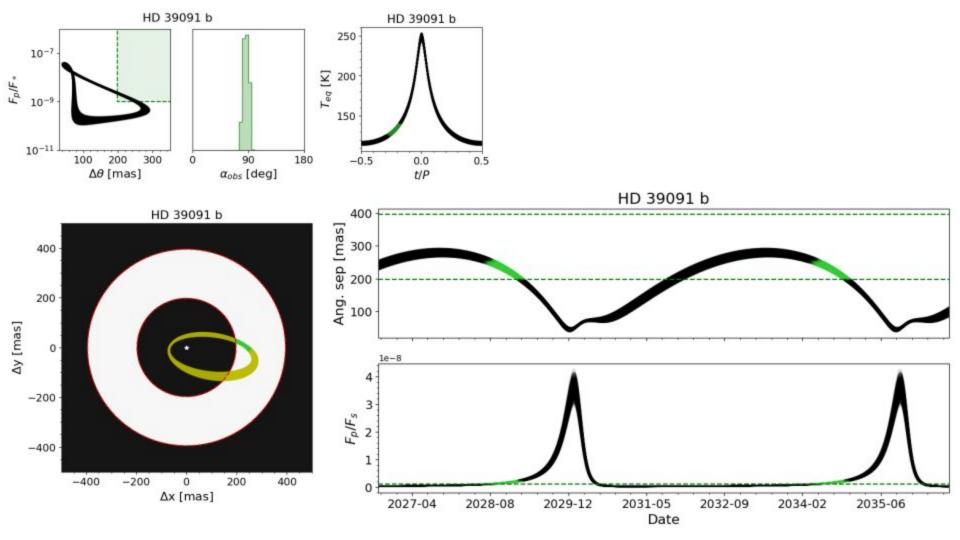
360 positions,

Nancy Grace Roman Space Telescope

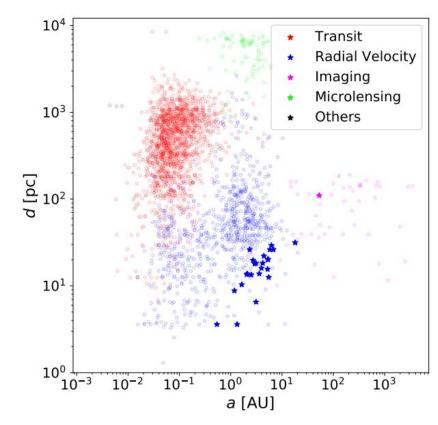

Launch in 2026/27


Equipped with an optical coronagraph as a technology demonstrator for HWO.





Carrión-González et al. (2021a)


Up to 26 Roman-accessible exoplanets

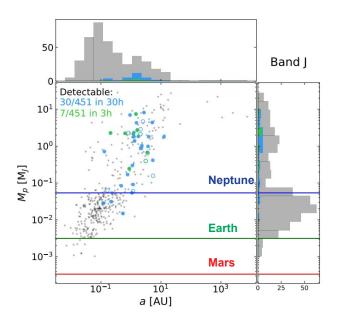
Optimistic 3-9 λ /D, C_{min}=10⁻⁹ case: **26 accessible planets**

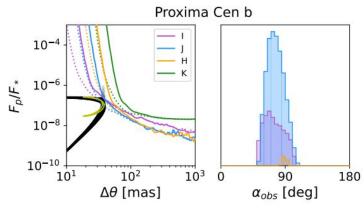
Intermediate 3.5-8.5λ/D, 3·10⁻⁹: 11 accessible planets

Pessimistic 4-8λ/D, 5·10⁻⁹: **3 accessible planets**

Carrión-González et al. (2021a)

Exoplanets with P_{access}>25% in the optimistic scenario, around stars brigther than V=7 mag


Groundbased

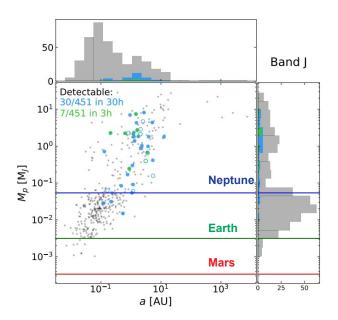

Proposed VLTI extension

Groundbased

Proposed VLTI extension

VLTI + J band

- Known exoplanets within 30 pc
- Detectable in 30h of integration
- Detectable in 3h of integration


Several targets potentially within Roman's reach

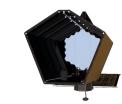
Groundbased

Proposed VLTI extension

Funded: reflected-light wavs. in the J (1.2 μm) band

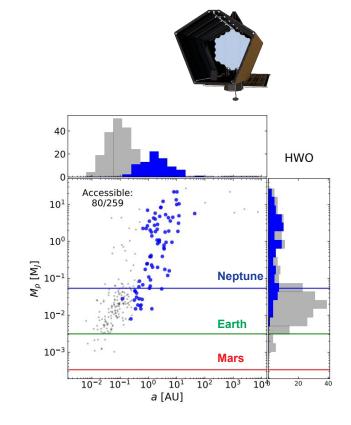
VLTI + J band

- Known exoplanets within 30 pc
- Detectable in 30h of integration
- Detectable in 3h of integration


Several targets potentially within Roman's reach

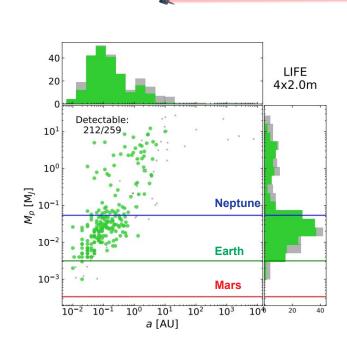
ERC Advanced **PLANETES** (PI: Lacour)

Lacour et al. (2025)



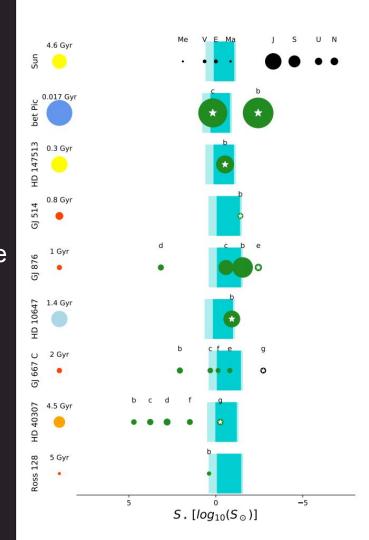
Potential targets

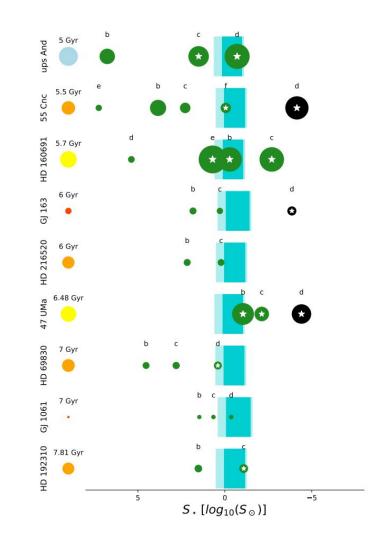
38 LIFE-detectable HZ planets


13 of them also accessible to HWO

Carrión-González et al. (2023)

 Accessible to HWO in reflected starlight

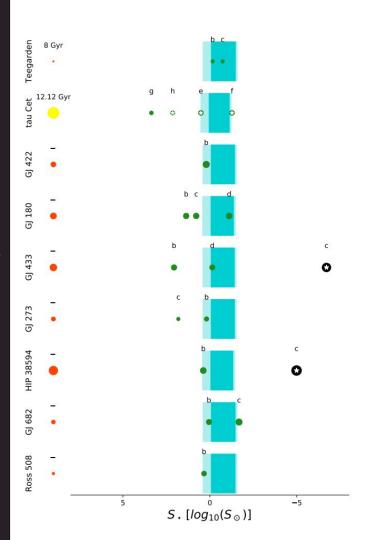

- Known exoplanets within 20 pc
- Detectable with **LIFE** (4x2m)

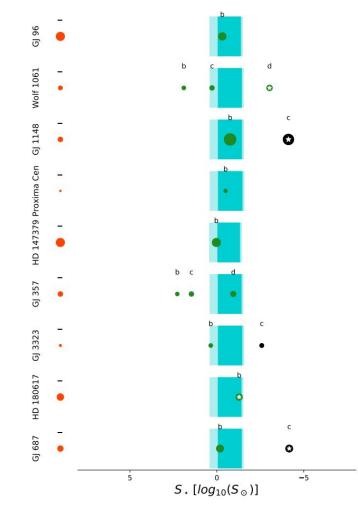

Detectable HZ planets

38 LIFE-detectable HZ planets ()

13 of them also accessible to HWO (★)

Carrión-González et al. (2023)

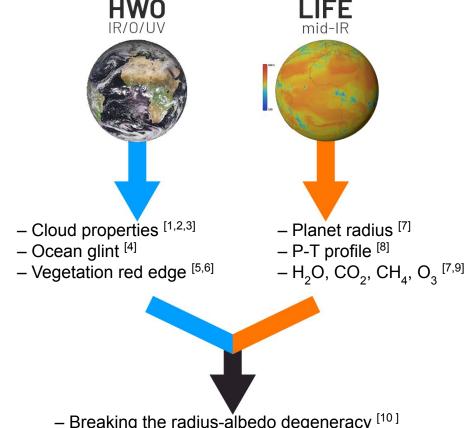



Detectable HZ planets

38 LIFE-detectable HZ planets ()

13 of them also accessible to HWO (★)

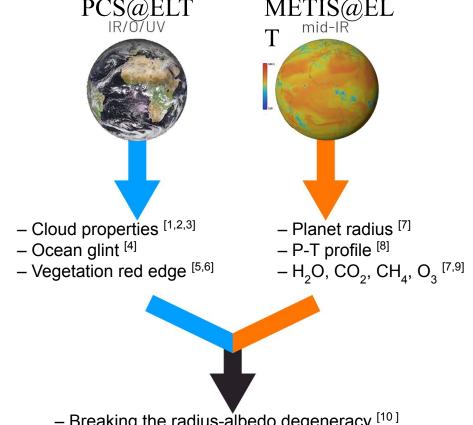
Carrión-González et al. (2023)



Visible & mid-IR science outlook

The total is greater than the sum of the parts

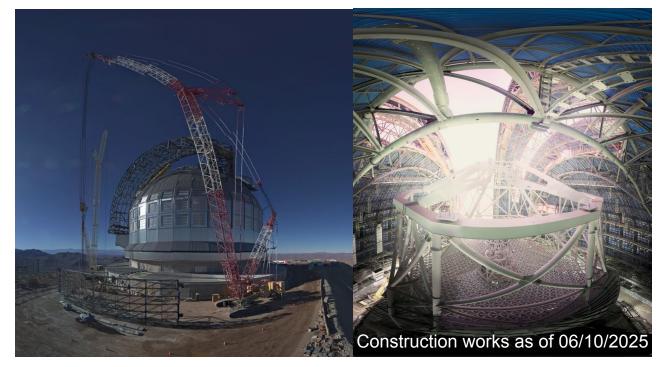
- [1] Lupu et al. 2016
- [2] Damiano & Hu 2020
- [3] Carrión-González et al. 2021b
- [4] Lustig-Yaeger et al. 2018
- ^[5] Sagan et al. 1993
- [6] Seager et al. 2005
- [7] Konrad et al. 2022
- [8] Konrad et al. 2023
- [9] Alei et al. 2022
- [10] Carrión-González et al. 2020


- Breaking the radius-albedo degeneracy [10]
- Deriving the wavelength-dependent albedo and the planet's full energy budget
- Detecting eventual greenhouse effect

Visible & mid-IR science outlook

The total is greater than the sum of the parts

Applicable to HWO & LIFE but also to ELT


- [1] Lupu et al. 2016
- [2] Damiano & Hu 2020
- [3] Carrión-González et al. 2021b
- [4] Lustig-Yaeger et al. 2018
- [5] Sagan et al. 1993
- [6] Seager et al. 2005
- [7] Konrad et al. 2022
- [8] Konrad et al. 2023
- [9] Alei et al. 2022
- [10] Carrión-González et al. 2020

- Breaking the radius-albedo degeneracy [10]
- Deriving the wavelength-dependent albedo and the planet's full energy budget
- Detecting eventual greenhouse effect

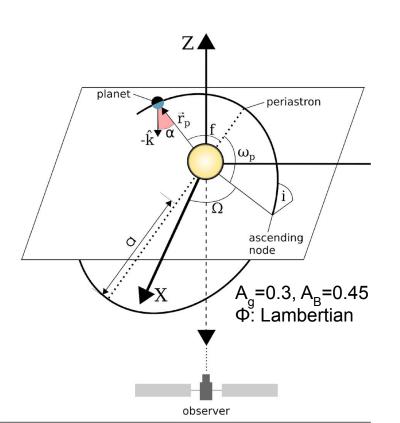
ELT

1st light planned for 2029

Several instruments capable of directly imaging exoplanets:

- METIS (mid-IR)
- PCS (visible near-IR)
- ANDES, HARMONI (visible near-IR)

Outlook

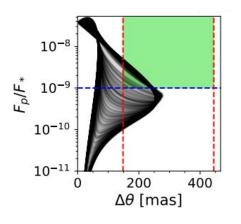


We are moving <u>from detection</u> to atmospheric characterization

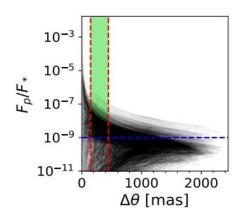
Contact: oscarrion@mpia.de

Instrument	Main specifications			Schedule				
	Field of view/slit length/ pixel scale	Spectral resolution	Wavelength coverage (µm)	Phase A	Project start	PDR	FDR	First light
MICADO	Imager (with coronagraph) 50.5" × 50.5" at 4 mas/pix 19" × 19" at 1.5 mas/pix	I, Z, Y, J, H, K + narrowbands	0.8-2.45	2010	2015	2019		
	Single slit	R ~ 20 000						
MORFEO	AO Module SCAO – MCAO		0.8–2.45	2010	2015	2023		
HARMONI + LTAO	IFU 4 spaxel scales from: 0.8" × 0.6" at 4 mas/pix to 6.1" × 9.1" at 30 × 60 mas/pix (with coronagraph)	R ~ 3 200 R ~ 7 100 R ~ 17 000	0.47–2.45	2010	2015	2018		
METIS	Imager (with coronagraph) 10.5" × 10.5" at 5 mas/pix in <i>L</i> , <i>M</i> 13.5" × 13.5" at 7 mas/pix in <i>N</i>	L, M, N + narrowbands	3–13					
	Single slit	R ~ 1400 in L R ~ 1900 in M R ~ 400 in N		2010	2015	2019		
	IFU 0.6" × 0.9" at 8 mas/pix (with coronagraph)	L, M bands R ~100 000						
ANDES	Single object	R ~100000	0.4-1.8 simultaneously					
	IFU (SCAO)			2018	>	>		
	Multi object (TBC)	R ~10000						
MOSAIC	~ 7-arcminute FoV ~ 200 objects (TBC)	R ~5000-20000	0.45-1.8 (TBC)	2018	>	>		
	~8 IFUs (TBC)	R ~5000-20000	0.8-1.8 (TBC)					
PCS	Extreme AO camera and spectrograph	TBC	TBC		>	>		

Theoretical setting



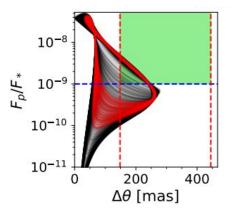
Compatible with missing parameters


```
e \in [0,1) \in (-1,1] \omega_p \in [0,2\pi] \in (0,2\pi] \in (0,2\pi] \in (0,2\pi] Otegi et al. 2020
```

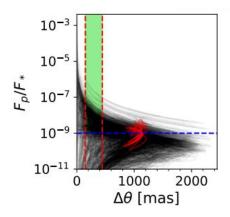
The importance of knowing the orbital inclination

π Men b

Proxima c


For π Men b and Proxima Cen c, astrometric measurements are available.

- $i_{(\pi \text{ Men b})}$ ~130° (Xuan & Wyatt 2020; De Rosa et al. 2020; Damasso et al. 2020)
- $i_{\text{(Proxima c)}} \sim 30^{\circ}$ (Benedict & McArthur 2020; Kervella et al. 2020)

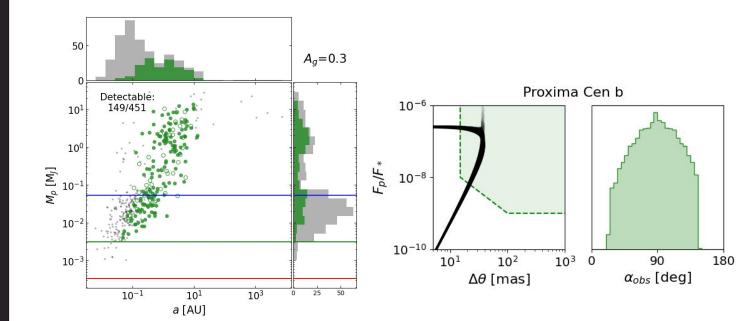

Jones et al. (2002) Damasso et al. (2020)

The importance of knowing the orbital inclination

π Men b

Proxima c

- The main results for π Men b do not change if *i* is known ($\alpha_{obs} = [70^{\circ}, 95^{\circ}]$) or unknown ($\alpha_{obs} = [69^{\circ}, 95^{\circ}]$).
- With current estimates of *i* and *e*, the orbit of Proxima c is not accessible with Roman.
 - Gaia will provide astrometry of many more planets.

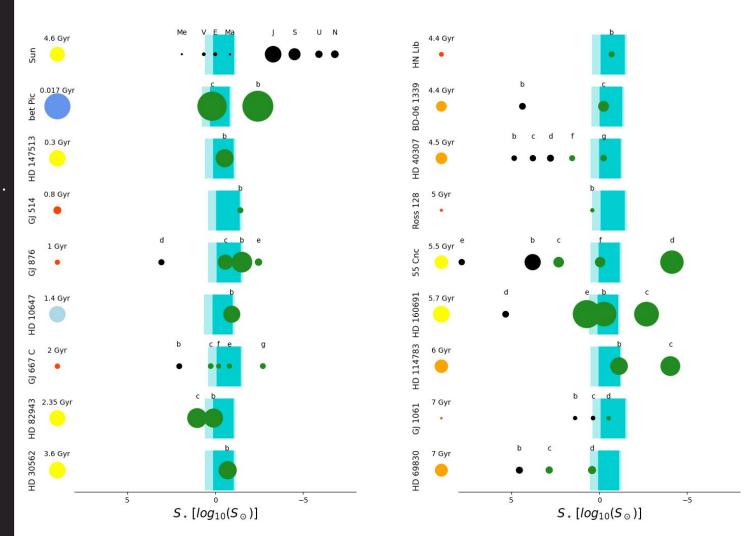

PCS

PCS

(preliminary)

Orbital simulations from Carrión-González et al. (2021)

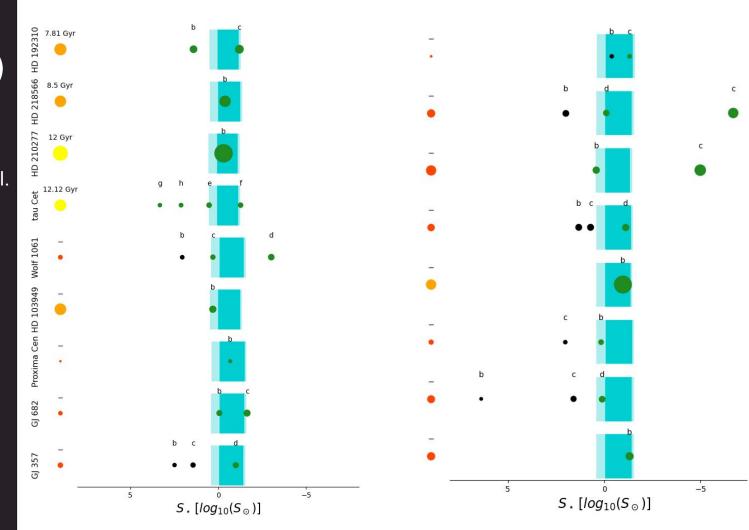
Contrast curve from Kasper et al. (2021)

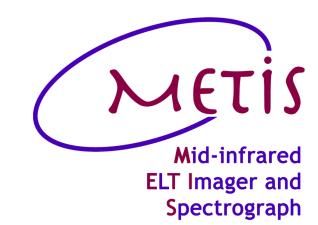


Considering only planets within 30 pc

PCS (preliminary)

Orbital simulations: Carrión-González et al. (2021)


Contrast curve from Kasper et al. (2021)



PCS (preliminary)

Orbital simulations: Carrión-González et al. (2021)

Contrast curve from Kasper et al. (2021)

METIS Direct Imaging of Old, Cold Jupiters Identified by Radial Velocity Surveys

References:

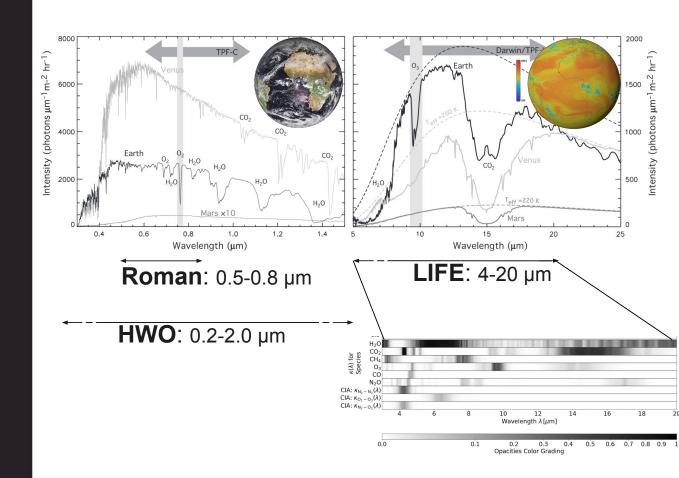
- METIS Science Case September 2022 (FdR document)
- METIS System Design & Analysis Report (FdR document)
- METIS User manual draft

METIS REFERENCE PROGRAMMES

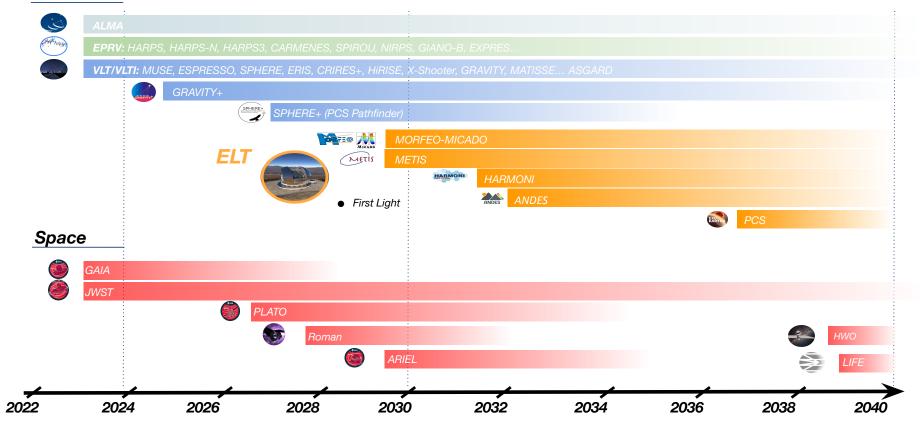
A search for nearby temperate rocky planets

Important references:

- Bowens et al. 2021, A&A 653, A8
- Alpha Centauri 2023 workshop
- Wagner et al., 2021, NatCo, 12, 922
- E-REP-ULG-MET-1024 v1-0 (HCI performance analysis)
- E-REP-ULG-MET-1019 v1-0 (Influence of water vapor on HCI performance)


Complementary methods, same science goals

How unique is our Earth?


Selsis et al. (2008) Konrad et al. (2022) Credit images: ESA

Visible & near-IR

Mid-IR

Ground

Groundbased

Next step: new 5th UT & I band

Lacour et al. (2025)

Direct imaging timeline

Astro2020 Decadal Survey (Nov. 2021)

The decadal survey recommends a large (~6m diameter) IR/O/UV space telescope with high-contrast imaging and spectroscopy (...) This is an ambitious mission with the goal of searching for biosignatures from habitable zone exoplanets and providing a powerful new facility for general astrophysics.

ESA Voyage 2050 (June 2021)

The "Characterisation of Temperate Exoplanets" [in thermal emission] is considered as having the highest scientific priority (...). The committee recommends that ESA launch a detailed study involving the scientific community for the exoplanet theme to assess its likelihood of success of feasibility within the Large mission cost-cap. (...) If it is found that at least 10 temperate exoplanets (within some reasonable bound of uncertainty) can be characterised and thus a scientific breakthrough can be achieved in a feasible and affordable mission, then the committee recommends such a theme to be selected for the third Large mission in the Voyage 2050 timeframe.

(...) we thus need to observe a sample of temperate planets with varying size and insolation, including planets that are bigger and receive more insolation that what we think is theoretically possible [to develop a habitable climate]

Input catalogue **Statistical** d (pc) Exoplanet method Archive a (AU) 10000 P (days) simulations е i (deg) upper & lower 10000 ω_p (deg) uncertainties orbits $M_p (M_{Jup})$ $R_p (R_{Jup})$ M_* (M_{Sun}) Output catalogue R_* (R_{Sun}) Carrión-González et al. (2021a)