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Ot order planet formation physics is still unclear, and
makes very different predictions at 0.1-5 au

pebble pile-up (Drazkowska et al. 2016) photoevaporation (Carrera et al. 2017)
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Ot order planet formation physics is still unclear, and
makes very different predictions at 0.1-5 au

1st order post-formation physics is also
unclear! Planet-planet scattering,
. . ration (Carrera et al. 2017
secular interactions?? ( ) _- MMSN

pebble pile-up (Drazko

surface density of planetesimals [g/cm?]
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Eccentricities for this critical 0.1-5au
population can help unravel formation history.

scattering events formation mechanism secular interactions




As RV survey baselines increase, we can start to
learn about the demographics of widely-separated
giant planets.

Observing baselines for stars in the California Legacy survey:
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We set out to model the eccentricities of “typical
giant planets” at 0.1-5au.

We started by modeling survey sensitivity:

18.9M, < Msini < 94.4 M,
6000.0 Mg < Msini < 30000.0 Mg
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Next, we accounted for different types of uncertainty.

Poisson
distributed Population-
likelihood in Hierarchical level
each binin formulation marginalization
parameter over inclination
space
Accounts for counting Accounts for Allows us to measure
statistics in observed uncertainty in individual occurrence rates as a
sample planet parameters function of mass, even
though we measure
Msini

Based on methodology developed by Hogg+ (2010) and Foreman-Mackey+ (2014)



30 Mg < M < 1000 Mg
0.1 M<M<31M
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30 Mg < M < 1000 Mg
<M<3.1MJ
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Npi / 100 stars

Here are the same results in 1D:
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Npi / 100 stars

Here are the same resu
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The elevated eccentricities of giant planets
~1-5 au may point to a giant impacts phase.
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These trends are still coarse. We’re excited for Gaia DR4,

which should blow these statistics out of the water.
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These trends are still coarse. We’re excited for Gaia DR4,
which should blow these statistics out of the water.
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Summary:

* Planet formation is very uncertain
* Most known giant planets are atypical

* Long-baseline RV surveys are beginning to discover the most
commonly occurring giant planets

* The eccentricities of these most common planets will give us
insight into planet formation overall

* We used the California Legacy Survey, a public, approx.
uniform sample to measure occurrence rates of typical giant
planets as a function of eccentricity, mass, and semimajor axis

* We observed a peak in the eccentricity distribution of super-
Jovian exoplanets at their peak of occurrence, potentially
pointing to a scattering/giant impacts phase.

(9]
o

Eccentricity from simulations

o
e

o
o

o
~

o
N

©
o
|

Ng / 100 stars

® m>117MJ
® m<117MJ
— m=117MJ

Np /100 stars
n N [+>] w

[=}

peak Gaia sensitivity @ 200 pc

——

= Occurrence
— B8.2%
-+ Count

.03 0.1 0.3 1 3 10 32
-1 0 orbital separation (au)
10 10
Semimajor axis (AU)
30 Mg < M < 1000 Mg 1000 Mg < M < 6000 Mg 6000 My < M < 30000 Mg
0.1M<M<31M, 31M<M<189 M, 18.9 My < M < 94.4 M,
4 arange:o.lau < a < 4.6au 14 14
12 12
* 10 10
8 8
[ [
* 4 4
+ : + 2 * * 4 2
,ALI 0 ! Om
X 0.8 . 1

15



The elevated eccentricities of giant planets ~1-5
au may point to a giant impacts phase. (Frelikh+2019)

1.0 = .
e m>1.17MJ
%) ® m<117M
= el .

Here’s the logic:

1. Multiple giant planets tend to form together

2. These planets tend to scatter each other

3. In the inner parts of solar systems, collisions “block” further eccentricity

excitation
4. High mass planets at ~1-10 au are likely to have experienced more scattering,

and therefore be more eccentric.
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How to measure the eccentricity of a planet at
>71au: wait.
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1 high mass pop.

I intermediate mass pop.
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Npi / 100 stars / Aloge(a)
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2-for-1 effect is unlikely:
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